Feb 22, 2009

Ugly side of solar panels

Producing electricity from solar cells reduces air pollutants and greenhouse gases by about 90 percent in comparison to using conventional fossil fuel technologies, claims a study to be published this month in “Environmental Science & Technology”. Good news, it seems, until one reads the report itself. The researchers come up with a solid set of figures. However, they interpret them in a rather optimistic way. Some recalculations (skip this article if you get annoyed by numbers) produce striking conclusions.

Solar panels don’t come falling out of the sky – they have to be manufactured. Similar to computer chips, this is a dirty and energy-intensive process. First, raw materials have to be mined: quartz sand for silicon cells, metal ore for thin film cells. Next, these materials have to be treated, following different steps (in the case of silicon cells these are purification, crystallization and wafering). Finally, these upgraded materials have to be manufactured into solar cells, and assembled into modules. All these processes produce air pollution and heavy metal emissions, and they consume energy - which brings about more air pollution, heavy metal emissions and also greenhouse gases.

Energy mix

The ecological burden of energy use depends on the way electricity was generated. Therefore, the researchers bring into account 3 scenarios. One is based on the average European energy mix, another on the average American energy mix (which is about 45% more CO2-intensive). A third scenario uses the figures of the recent “CrystalClear” European Commission project, which investigated the real energy mix used by 11 European and American silicon and PV module manufacturing factories. Since they use comparatively more gas and hydropower, this is the best case scenario. The researchers investigated 4 types of solar cells: multi-crystalline silicon (with an efficiency of 13%), mono-crystalline silicon (14%), ribbon silicon (11.5%), and thin-film cadmium telluride (9%).

----------------------------------------------------------------------------------------------------------------------------------------------

"The optimistic conclusions of the researchers are based on a life expectancy of 30 years and solar insolation in the Mediterranean"

----------------------------------------------------------------------------------------------------------------------------------------------

The scientists come up with figures concerning the amount of greenhouses gasses emitted per kilowatt-hour of electricity delivered by one square meter of solar cells. They do that for every type of cell and for the three different scenarios. Thin film solar cells get the best score with 20.5 grams of CO2 (*) in the European energy mix and 25 grams of CO2 in the American energy mix. In spite of their lower efficiency, they are more eco-friendly because they need less material and no aluminium frame. In spite of their high efficiency, mono-crystalline silicon cells score worst, with 43 grams of CO2 in the EU, and 55 gram of CO2-equivalent in the US. All other types and scenarios fit between these two extremes.

Solar insolation

However, these conclusions are dependent on some assumptions, most importantly solar insolation (the amount of sunlight that the cells receive) and lifetime expectancy. For solar insolation, the researchers choose 1,700 kWh per m² per year, which is the average of sunlight in Southern Europe. For lifetime expectancy, they choose 30 years. From these variables, they calculate the total lifetime electricity generation of one square meter of solar cells. Next, they divide the amount of CO2 emitted for the production of one square meter of solar panels by this lifetime electricity generation – and that’s how they achieve their conclusions.

----------------------------------------------------------------------------------------------------------------------------------------------

"Surprisingly, the key data of the calculation (the amount of CO2 emitted per square meter of solar panels) are nowhere to found in the report"

----------------------------------------------------------------------------------------------------------------------------------------------

Surprisingly, the key data of the calculation (the amount of CO2 emitted per square meter of solar panels) are nowhere to found in the report. That’s remarkable, since these data are the most objective numbers available. Even so, they can be calculated by multiplying the obtained results (in gram CO2 emitted per kilowatt-hour of generated electricity) by the lifetime electricity generation. This calculation gives the amount of greenhouse gases emitted for the production of one square meter of solar panels, regardless of the assumptions on solar insolation and lifetime expectancy.

2 to 20 flights

Once calculated, it’s not so surprising that the researchers choose not to write these figures down. In the best case scenario, one square meter of solar cells carries a burden of 7,527 kilograms of CO2. In the worst case scenario, that becomes 31,416 kilograms of CO2. An average household needs at least 8 square meters of solar panels for electricity generation alone (make that 10 in the US), which boils down to a global warming debt of a whopping 60,000 to 940,000 kilograms of CO2. These numbers equate to 12 to 188 intercontinental flights (see comments for details of the mistake, see paragraph below for the correct version).

Once calculated, it's not so suprising that the researchers choose not to write these figures down. In the best case scenario, one square meter of solar cells carries a burden of 75 kilograms of CO2. In the worst case scenario, that becomes 314 kilograms of CO2. With a solar insolation of 1,700 kWh/m²/yr an average household needs 8 to 10 square meters of solar panels, with a solar insolation of 900 kWh/m²/yr this becomes 16 to 20 square meters. Which means that the total CO2 debt of a solar installation is 600 to 3,140 kilograms of CO2 in sunny places, and 1,200 to 6,280 kilograms of CO2 in less sunny regions. These numbers equate to 2 to 20 flights Brussels-Lissabon (up and down, per passenger) - source CO2 emissions Boeing 747.

----------------------------------------------------------------------------------------------------------------------------------------------

"Solar panels mounted on gadgets are completely insane"

----------------------------------------------------------------------------------------------------------------------------------------------

According to the researchers, producing the same amount of electricity by fossil fuel generates at least 10 times as much greenhouse gasses. Checking different sources, this claim is confirmed: 1 kilowatt-hour of electricity generated by fossil fuels indeed emits 10 times as much CO2 (around 450 grams of CO2 per kWh for gas and 850 for coal). Solar panels might be far from an ideal solution, but they are definitely a better choice compared to electricity generated by fossil fuels. At least if we follow the assumptions chosen by the researchers.

Northward

Logically, if we make the same calculations for a solar insolation of 900 kWh/m² (the yearly average in Western Europe and in the Northeast and Northwest USA), the results get worse. In the worst case scenario (US grid, mono-crystalline silicon), emissions rise to 104 gram CO2 per kilowatt-hour of solar generated electricity, which makes solar panels only 4 times cleaner than gas. Now let’s play a bit with the life expectancy. If we combine this lower solar insolation with an expected lifetime of only 15 years, the worst case scenario becomes 207 grams of CO2 per kilowatt-hour – just 2 times better than gas. Agreed, this is the worst case scenario, and even in that case solar panels are still a better choice than fossil fuels. But it becomes quite hard to describe them as a “clean” source of fuel.

No comments:

Labels